Southeastern European Regional Programming Contest
Bucharest, Romania

Problem G
Combinations

Input File: G.DAT
Program Source File: G.PAS or G.C or G.CPP

An \mathbf{n}-set is a set with \mathbf{n} elements. A k-combination of an \mathbf{n}-set \mathbf{S} is a \mathbf{k}-subset of \mathbf{S}. For example the $\mathbf{3}$-combinations of the set $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}\}$ are $\mathbf{a}, \mathbf{b}, \mathbf{c}\},\{, \mathbf{a}, \mathbf{d}\},\{\mathbf{a}, \mathbf{c}, \mathbf{d}\},\{\mathbf{b}, \mathbf{c}, \mathbf{d}\}$.

Let $\mathbf{C}_{\mathbf{k}}$ be the set of all strings that represent \mathbf{k}-combinations of letters from the English alphabet. Each string from $\mathbf{C}_{\mathbf{k}}$ is sorted in ascending lexicographic order. For example, \mathbf{C}_{52} conta ins the string ABCDEFGHIJ KLMNOPQRSTUNWXYZabc defghijklmnopqrstuvwxyz (the entire alphabet).

Let \mathbf{X} be a non-empty string made of letters from the English alphabet. Considering the lexicographic order of strings, we define the functions floor and ceil as follows:

- $\quad \mathbf{f l o o r}(\mathbf{k}, \mathbf{X})$ finds the largest string from $\mathbf{C}_{\mathbf{k}}$ not greater than \mathbf{X}; floor (\mathbf{k}, \mathbf{X}) is undefined if \mathbf{X} is smaller than the smallest string from $\mathbf{C}_{\mathbf{k}}$;
- ceil(\mathbf{k}, \mathbf{X}) finds the smallest string from $\mathbf{C}_{\mathbf{k}}$ not smaller than \mathbf{X}; $\mathbf{c e i l}(\mathbf{k}, \mathbf{X})$ is undefined if \mathbf{X} is greater than the largest string from $\mathbf{C}_{\mathbf{k}}$.

For example, floor(3,AB) is undefined, ceil(3,AB) = ABC; floor(3,a) = Zyz, ceil(3,a) = abc; floor $(3, b d e)=$ ceil $(3, b d e)=$ bde; floor $(3, x z)=x y z$, ceil $(3, x z)$ is und efined.

Figure 1. An example of program input and output
Write a program that reads pairs of values $\mathbf{k} \mathbf{X}$ from a text file and, for each pair, computes floor (\mathbf{k}, \mathbf{X}) and $\mathbf{c e i l}(\mathbf{k}, \mathbf{X})$. Each pair $\mathbf{k} \mathbf{X}$ is on a separate line of the text file, where \mathbf{k} is a n integer, $\mathbf{1} \leq \mathbf{k} \leq 52$, and \mathbf{X} is a non empty string made of at most 52 letters. The input file contains correct data.

For each pair $\mathbf{k} \mathbf{X}$ of values, the strings floor (\mathbf{k}, \mathbf{X}) a nd ceil($\mathbf{k}, \mathbf{X})$ a re printed on successive lines on the standard output and are followed by an empty line. If the strings floor(\mathbf{k}, \mathbf{X}) a nd $\mathbf{c e i l}(\mathbf{k}, \mathbf{X})$ are undefined the messages floor= null a nd, respectively, ceil = null are printed. A sample of program input and output is illustrated in figure 1.

