Southeastern European Regional Programming Contest Bucharest, Romania
October 18, 2003

Problem I

Binary Polynomials
Input File: I.IN
Output File: standard output
Program Source File: I.PAS or I.C or I.CPP or I.JAVA
Each mapping f of the set $\{0,1\}^{n}$ of n-dimensional binary vectors to $\{0,1\}$ is called Boolean function of n variables and denoted by $f\left(x_{n}, x_{n-1}, \ldots, x_{1}\right)$. For cryptography some properties of the Boolean functions are interesting. Let denote by $B(n, k)$ the set of n-dimensional binary vectors that have k 1 's. The task is for given Boolean function f to find the number of vectors ($b_{n}, b_{\left.n-1, \ldots, b_{1}\right)}$ from $B(n, k)$ such that $f\left(b_{n}, b_{n-1, \ldots,}, b_{1}\right)=1$.

The Boolean function will be given by its (unique) polynomial modulo 2. In these polynomials the operations addition and multiplication modulo 2 are used, defined as shown in the tables of Fig. 1. In the polynomial of a function any product of m variables $x_{i_{1}} x_{i_{2}} \mathrm{~K} x_{i_{m}}$ could participate or not participate. So the general form of the polynomial for n variables is:

$$
a_{0}+a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{2} x_{1}+a_{4} x_{3}+a_{5} x_{3} x_{1}+a_{6} x_{3} x_{2}+a_{7} x_{3} x_{2} x_{1}+\ldots+a_{N} x_{n} x_{n-1 \ldots} x_{1}
$$

where all coefficients $a_{j}, j=0,1, \ldots, N=2^{n}-1$, are 0 's or 1 's and if the coefficient is equal to 0 we will omit the corresponding product and if it is equal to 1 we just will omit the coefficient. For example, the polynomial of the Boolean function disjunction of 2 variables given on Fig. 2 is $0+1 \cdot x_{1}+1 \cdot x_{2}+1 \cdot x_{2} x_{1}=x_{1}+x_{2}+x_{2} x_{1}$.

+	0	1
0	0	1
1	1	1

$*$	0	1
0	0	0
1	0	1

$x 2$	$x 1$	f
0	0	0
0	1	1
1	0	1
1	1	1

Fig. 1
Fig. 2
Your program has to be ready to solve more than one test case. The first line of the input file will contains only the number T of the test cases. Each of the following T lines will describe one function - first the numbers n and k separated by single space ($1 \leq n \leq 18,0 \leq k \leq n$) and then, separated by one more space a string of $2^{n} 0$'s and 1 's that are the coefficients of the corresponding polynomial, ordered as in the general form of the polynomial given above.

The output file have to contain T lines with a single number each - the number of vectors found by your program.

EXAMPLE

Input			
3		Output	
2	1	0111	2
4	2	1000000000000000	6
5	3	00000000000000000000000000000001	0

