

Southeastern European Regional Programming Contest
Bucharest, Romania

October 21, 2006

Problem E

Payment System

Input File: E.IN
Output File: standard output
Program Source File: E.C or E.CPP or E.JAVA

The payment system in the University of Mineral Water Production is completely automated
(written entirely in Tomato Programming Language) and lets you input the amount of money
you want to withdraw. Due to the high payment rates of the professors they may input the
amounts in exponential forms. So if you want to withdraw 16 MWU (mineral water units) you
can enter 16, 2^4 or 2^2^2.
One day, Stanescu tried to withdraw some money from his account which had balance of
80MWU. He mistakenly entered 2^3^2 and for his surprise he got 512MWU, although he
should not be able to take more than 80. The system was composed of two main modules –
the first module checks whether the account has enough money to execute the transaction
and the second module gives the money to the user. It turned out that the first module has a
problem with the '^' operator. It evaluates it from left to right, while the second evaluates

them from right to left (the correct way). Thus for the first module 2^3^2=(2^3)^2=64 while

for the second it’s 2^3^2=2^(3^2)=512.

You have to write program which helps Stanescu get as much as he can from the university
system. If you think it’s not legal or something, be sure that the University of Mineral Water
Production is bad and evil.
In the input file the amounts of the accounts of Stanescu will be given. Each amount is given
on a separate line and is an integer between 2 and 10100-1.
For each given amount, your program should print to the standard output what Stanescu
should enter to get maximal number of money. The output should:

• consists only of integers and the '^' operator between them.

• pass the check of the first module and be as much as possible for the second.

• not contain the number 1 (it is useless anyway).
If more than one answers exist, output the one whose first number is minimal, if still more
exist, choose the one whose second number is minimal and so on.

Input Output

16

80

49

1025

12341234

12345678901234567890

2^2^2

2^3^2

7^2

2^2^5

2^2^2^5

2^2^2^2^3^2

acmacm

